Product Description

Characteristics:
(1)Large output torque
(2) Safe, reliable, economical and durable
(3) Stable transmission, quiet operation
(4) High heat-radiating efficiency, high carrying ability
(5) Combination of 2 single-step worm gear speed reducers, meeting the requirements of super speed ratio
(6) Mechanical gearboxes are widely used in the sectors,like foodstuff, ceramics, and chemical manufacturing, as well as packing, printing, dyeing and plastics
 Technical data:
(1) Motor input power:0.06kw-15kw
(2)  Output torque:4-2320N.M
(3)  Speed ratio of worm gear peed reducer: 5/10/15/20/25/30/40/50/60/80/100
(4)  With IEC motor input flange: 56B14/71B14/80B5/90B5…
 Materials:
(1)   NMRV571-NMRV090: Aluminium alloy housing
(2)   NMRV110-150: Cast iron housing
(3)   Bearing: CHINAMFG bearing & Homemade bearing
(4)   Lubricant: Synthetic & Mineral
(5)  The material of the worm mandrel is HT250, and the worm ring gear is ZQSn10-1.
(6)  With high quality homemade bearings, assembled CHINAMFG oil seals & filled with high quality lubricant.
Operation&mantenance
(1)When worm speed reducer starts to work up to200-400 hours, its lubricant should be replaced.
(2)The gearbox need to replace the oil after 4000 hours.
(3)Worm reduction gearbox is fully filled with lubricant oil after finshed assembly.
(4)Lubricanting oil should be kept enough in the casing and checked at a fixed time.
 Color:
(1)   Blue / Light blue
(2)   Silvery White
 Quality control
(1)  Quality guarantee: 1 year
(2)  Certificate of quality: ISO9001:2000
(3)   Every product must be tested before sending

Motor power  Model speed ratio output speed output toruqe
0.06kw 1400rpm NMRV030 5 280rpm  2.0N.M
NMRV030 7.5 186rpm  2.6N.M
NMRV030 10 140rpm  3.3N.M
NMRV030 15 94rpm  4.7N.M
NMRV030 20 70rpm  5.9N.M
NMRV030 25 56rpm  6.8N.M
NMRV030 30 47rpm  7.9N.M
NMRV030 40 35rpm  9.7N.M
NMRV030 50 28rpm 11.0N.M
NMRV030 60 24rpm 12.0N.M
NMRV030 80 18rpm 14.0N.M
0.09kw 1400rpm NMRV030 5 280rpm  2.7N.M
NMRV030 7.5 186rpm  3.9N.M
NMRV030 10 140rpm  5.0N.M
NMRV030 15 94rpm  7.0N.M
NMRV030 20 70rpm  8.8N.M
NMRV030 25 56rpm 10.0N.M
NMRV030 30 47rpm 12.0N.M
NMRV030 40 35rpm 14.0N.M
NMRV030 50 28rpm 17.0N.M
NMRV030 60 24rpm 18.0N.M
0.12kw 1400rpm NMRV030 5 280rpm  3.6N.M
NMRV030 7.5 186rpm  5.2N.M
NMRV030 10 140rpm  6.6N.M
NMRV030 15 94rpm  9.3N.M
NMRV030 20 70rpm 12.0N.M
NMRV030 25 56rpm 14.0N.M
NMRV030 30 47rpm 16.0N.M
NMRV030 40 35rpm 19.0N.M
NMRV030 50 28rpm 22.0N.M
0.18kw 1400rpm NMRV030 5 280rpm  5.3N.M
NMRV030 7.5 186rpm  7.7N.M
NMRV030 10 140rpm 10.0N.M
NMRV030 15 94rpm 14.0N.M
NMRV030 20 70rpm 18.0N.M
NMRV030 25 56rpm 20.0N.M
NMRV030 30 47rpm 24.0N.M

Application: Reducer
Hardness: Hardened
Type: Worm and Wormwheel
Color: Blue
Input Flange: 56b14/71b5/80b5..
Material: Aluminium
Customization:
Available

|

Customized Request

worm gearbox

How to Install and Align a Worm Reducer Properly

Proper installation and alignment of a worm reducer are crucial for ensuring optimal performance and longevity. Follow these steps to install and align a worm reducer:

  1. Preparation: Gather all the necessary tools, equipment, and safety gear before starting the installation process.
  2. Positioning: Place the worm reducer in the desired location, ensuring that it is securely mounted to a stable surface. Use appropriate fasteners and mounting brackets as needed.
  3. Shaft Alignment: Check the alignment of the input and output shafts. Use precision measurement tools to ensure that the shafts are parallel and in line with each other.
  4. Base Plate Alignment: Align the base plate of the reducer with the foundation or mounting surface. Ensure that the base plate is level and properly aligned before securing it in place.
  5. Bolt Tightening: Gradually and evenly tighten the mounting bolts to the manufacturer’s specifications. This helps ensure proper contact between the reducer and the mounting surface.
  6. Check for Clearance: Verify that there is enough clearance for any rotating components or parts that may move during operation. Avoid any interference that could cause damage or performance issues.
  7. Lubrication: Apply the recommended lubricant to the worm reducer according to the manufacturer’s guidelines. Proper lubrication is essential for smooth operation and reducing friction.
  8. Alignment Testing: After installation, run the worm reducer briefly without a load to check for any unusual noises, vibrations, or misalignment issues.
  9. Load Testing: Gradually introduce the intended load to the worm reducer and monitor its performance. Ensure that the reducer operates smoothly and efficiently under the load conditions.

It’s important to refer to the manufacturer’s installation guidelines and specifications for your specific worm reducer model. Proper installation and alignment will contribute to the gearbox’s reliability, efficiency, and overall functionality.

worm gearbox

How to Calculate the Efficiency of a Worm Gearbox

Calculating the efficiency of a worm gearbox involves determining the ratio of output power to input power. Efficiency is a measure of how well the gearbox converts input power into useful output power without losses. Here’s how to calculate it:

  • Step 1: Measure Input Power: Measure the input power (Pin) using a power meter or other suitable measuring equipment.
  • Step 2: Measure Output Power: Measure the output power (Pout) that the gearbox is delivering to the load.
  • Step 3: Calculate Efficiency: Calculate the efficiency (η) using the formula: Efficiency (η) = (Output Power / Input Power) * 100%

For example, if the input power is 1000 watts and the output power is 850 watts, the efficiency would be (850 / 1000) * 100% = 85%.

It’s important to note that efficiencies can vary based on factors such as gear design, lubrication, wear, and load conditions. The calculated efficiency provides insight into how effectively the gearbox is converting power, but it’s always a good practice to refer to manufacturer specifications for gearbox efficiency ratings.

worm gearbox

Can a Worm Gearbox Provide High Torque Output?

Yes, a worm gearbox is capable of providing high torque output due to its unique design and principle of operation. Worm gears are known for their high torque multiplication capabilities, making them suitable for applications that require significant torque transfer.

The torque output of a worm gearbox is influenced by several factors:

  • Lead Angle: The lead angle of the worm affects the mechanical advantage of the gear system. A larger lead angle can result in higher torque output.
  • Worm Diameter: A larger diameter worm can offer increased torque output as it provides more contact area with the gear.
  • Gear Ratio: The gear ratio between the worm and the gear determines the torque multiplication factor. A higher gear ratio leads to higher torque output.
  • Lubrication: Proper lubrication is essential to minimize friction and ensure efficient torque transmission.
  • Material and Quality: High-quality materials and precision manufacturing contribute to the gearbox’s ability to handle high torque loads.

Due to their ability to provide high torque output in a compact form factor, worm gearboxes are commonly used in various industrial applications, including heavy machinery, construction equipment, conveyor systems, and more.

China wholesaler Taizhou CZPT Nmrv Worm Gearbox   comer gearbox	China wholesaler Taizhou CZPT Nmrv Worm Gearbox   comer gearbox
editor by CX 2023-10-08